[学习] NLTK Python自然语言处理
Gutenberg Corpus
>>> from nltk.corpus import gutenberg
>>> gutenberg.fileids()
['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-brown.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']
>>> emma = gutenberg.words('austen-emma.txt')
>>> len(emma)
192427
创建nltk.Text对象
>>> type(text1)
<class 'nltk.text.Text'>
>>> emma = nltk.Text(gutenberg.words('austen-emma.txt'))
>>> emma.concordance("surprize")
>>> for fileid in gutenberg.fileids():
num_chars = len(gutenberg.raw(fileid))
num_words = len(gutenberg.words(fileid))
num_sents = len(gutenberg.sents(fileid))
num_vocab = len(set([w.lower() for w in gutenberg.words(fileid)]))
print(int(num_chars/num_words), int(num_words/num_sents), int(num_words/num_vocab), fileid)
4 21 26 austen-emma.txt
4 23 16 austen-persuasion.txt
4 23 22 austen-sense.txt
4 33 79 bible-kjv.txt
4 18 5 blake-poems.txt
4 17 14 bryant-stories.txt
4 17 12 burgess-busterbrown.txt
4 16 12 carroll-alice.txt
4 17 11 chesterton-ball.txt
4 19 11 chesterton-brown.txt
4 16 10 chesterton-thursday.txt
4 17 24 edgeworth-parents.txt
4 24 15 melville-moby_dick.txt
4 52 10 milton-paradise.txt
4 11 8 shakespeare-caesar.txt
4 12 7 shakespeare-hamlet.txt
4 12 6 shakespeare-macbeth.txt
4 35 12 whitman-leaves.txt
>>> macbeth_sentences = gutenberg.sents('shakespeare-macbeth.txt')
>>> macbeth_sentences[1037]
['Good', 'night', ',', 'and', 'better', 'health', 'Attend', 'his', 'Maiesty']
>>> longest_len = max([len(s) for s in macbeth_sentences])
>>> [s for s in macbeth_sentences if len(s) == longest_len]
[['Doubtfull', 'it', 'stood', ',', 'As', 'two', 'spent', 'Swimmers', ',', 'that', 'doe', 'cling', 'together', ',', 'And', 'choake', 'their', 'Art', ':', 'The', 'mercilesse', 'Macdonwald', '(', 'Worthie', 'to', 'be', 'a', 'Rebell', ',', 'for', 'to', 'that', 'The', 'multiplying', 'Villanies', 'of', 'Nature', 'Doe', 'swarme', 'vpon', 'him', ')', 'from', 'the', 'Westerne', 'Isles', 'Of', 'Kernes', 'and', 'Gallowgrosses', 'is', 'supply', "'", 'd', ',', 'And', 'Fortune', 'on', 'his', 'damned', 'Quarry', 'smiling', ',', 'Shew', "'", 'd', 'like', 'a', 'Rebells', 'Whore', ':', 'but', 'all', "'", 's', 'too', 'weake', ':', 'For', 'braue', 'Macbeth', '(', 'well', 'hee', 'deserues', 'that', 'Name', ')', 'Disdayning', 'Fortune', ',', 'with', 'his', 'brandisht', 'Steele', ',', 'Which', 'smoak', "'", 'd', 'with', 'bloody', 'execution', '(', 'Like', 'Valours', 'Minion', ')', 'caru', "'", 'd', 'out', 'his', 'passage', ',', 'Till', 'hee', 'fac', "'", 'd', 'the', 'Slaue', ':', 'Which', 'neu', "'", 'r', 'shooke', 'hands', ',', 'nor', 'bad', 'farwell', 'to', 'him', ',', 'Till', 'he', 'vnseam', "'", 'd', 'him', 'from', 'the', 'Naue', 'toth', "'", 'Chops', ',', 'And', 'fix', "'", 'd', 'his', 'Head', 'vpon', 'our', 'Battlements']]